
Peeking through the window: Fingerprinting Browser Extensions
through Page-Visible Execution Traces and Interactions
Shubham Agarwal

CISPA Helmholtz Center for
Information Security
Saarbrücken, Germany

shubham.agarwal@cispa.de

Aurore Fass
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

fass@cispa.de

Ben Stock
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

stock@cispa.de

ABSTRACT
Browser extensions are third-party add-ons that provide myriads
of features to their users while browsing on the Web. Extensions
often interact with the websites a user visits and perform various
operations such as DOM-based manipulation, script injections, and
so on. However, this also enables nefarious websites to track their
visitors by fingerprinting extensions. Researchers in the past have
shown that extensions are susceptible to fingerprinting based on
the resources they include, the styles they deploy, or the DOM-
based modifications they perform. Fortunately, the current exten-
sion ecosystem contains safeguards against many such known
issues through appropriate defense mechanisms.

We present the first study to investigate the fingerprinting char-
acteristics of extension-injected code in pages’ JavaScript names-
pace and through other observable side-effects like changed cookies.
Doing so, we find that many extensions inject JavaScript that pol-
lutes the applications’ global namespace by registering variables. It
also enables the attacker application to monitor the execution of
the injected code by overwriting the JavaScript APIs and capturing
execution traces through the stacktrace, the set of APIs invoked,
etc. Further, extensions also store data on the client side and per-
form event-driven functionalities that aid in attribution. Through
our tests, we find 2,747 Chrome and 572 Firefox extensions to be
susceptible to fingerprinting. Unfortunately, none of the existing
defense mechanisms prevent extensions from being fingerprinted
through our proposed vectors. Therefore, we also suggest poten-
tial measures for developers and browser vendors to safeguard the
extension ecosystem against such fingerprinting attempts.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
Client-side Security, Extension Fingerprinting, Browser Extensions
ACM Reference Format:
Shubham Agarwal, Aurore Fass, and Ben Stock. 2024. Peeking through the
window: Fingerprinting Browser Extensions through Page-Visible Execution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670339

Traces and Interactions. In Proceedings of the 2024 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’24), October 14–18, 2024,
Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3658644.3670339

1 INTRODUCTION
With the rising trend of cookie-less tracking, online trackers are
in an arms race with Web Privacy advocates. They continuously
compete with various anti-tracking and fingerprinting measures
to uniquely identify users on the Web. Recent studies on browser
fingerprinting techniques have shown many cookie-less vectors,
such as Canvas APIs [4], WebGL APIs [5], and other side channels
[1, 27, 30, 42, 50, 57]. These techniques allow a malicious website
to effectively harvest client-side information specific to individual
users on the Web and further track their activity across websites.

Browser extensions have emerged as one of the most interesting
fingerprinting vectors for these trackers in recent times, owing to
their unique position in the overall Web ecosystem. Extensions can
perform privileged operations implemented in their background
script or even execute code in the Web applications’ execution
context through the content scripts. Tailored to provide a specific
set of features to their respective users, browser extensions may also
inadvertently reveal personal information about their users, such
as their geolocation, background, ethnicity, or social and personal
interests [24]. These extensions perform a specific and often highly
privileged set of operations, such as DOM-based modifications,
changes to cookies, or script injections, to implement their intended
functionality at runtime. These operations, however, could also
expose them to being uniquely identified by online trackers.

Prior work has shown different ways of uniquely identifying
browser extensions. Some of these includeWeb-accessible resources-
based (WAR-based) fingerprints [47], the side effect of code bloat-
ing [52], behavior-based fingerprints [24, 49, 53], user-induced side
effects [48], and stylesheet-based fingerprints [28]. On the other
hand, several mitigation techniques also intend to thwart any fin-
gerprinting attempts based on the above techniques [25, 46, 59]. The
studies have led to a cat-and-mouse game of newly introduced fin-
gerprinting vectors and subsequent defense mechanisms. A recent
example is the optional usage of randomized runtime identifiers
for extensions [39] to thwart WAR-based fingerprinting.

However, ultimately, every extension has some intended func-
tionality, much of which is to interact with the loaded page. This
also means that the extension needs to interact with the page
through various APIs from the content script. However, when not
done carefully, this can leave traces of the extension’s execution in
the JavaScript namespace of the document, i.e., within the reach

https://orcid.org/0000-0003-0110-0014
https://orcid.org/0000-0001-6611-4447
https://orcid.org/0000-0001-9659-0700
https://doi.org/10.1145/3658644.3670339
https://doi.org/10.1145/3658644.3670339
https://doi.org/10.1145/3658644.3670339


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shubham Agarwal, Aurore Fass, & Ben Stock

of a fingerprinting attacker. These range from client-side storage
(e.g., localStorage or cookies) through the invocation of global APIs
and properties (e.g., Array.forEach), and setting global variables
to observable events caused by extension-sent postMessages. No-
tably, none of the existing defenses (i.e., Parallel DOM [25], Shadow
DOM [28], or randomized extension URLs [46]) protect against
these vectors due to shared window context.

In this study, we first discuss how an extension is susceptible to
fingerprinting based on its execution trace and other JavaScript-
observable side-effects (e.g., changed cookies or sent postMessages).
We then build a fingerprinting page that sets up the JavaScript
environment such that it can capture an extension’s interaction
with it. Doing so repeatedly allows us to detect which observed
functionalities are consistently present to deterministically infer
the presence of an extension. We run our analysis on a set of up-
to-date Chrome extensions, showing that 2,747 extensions can be
fingerprinted through our identified vectors, affecting over 169M
users who installed these fingerprintable extensions. Over 59% of
the reported extensions adhere to the ManifestV3 standards, high-
lighting the fact that the issues are a threat to modern extensions.
Moreover, our results transfer to the Firefox ecosystem, where we
find 572 extensions that can be detected. Notably, by comparing
with the labeled dataset from Carnus [24], we are not only able
to detect 1,355 extensions, but importantly would still be able to
detect 484 extensions their approaches would be unable to detect if
dynamic runtime URLs were deployed. Our findings highlight that
the discovered issues not only affect both major extension ecosys-
tems but also add significant fingerprinting surface, which existing
(and proposed) approaches could not readily defend against.

We summarize the key contributions of this study here:
• We identify and leverage two classes of fingerprinting vec-
tors: execution traces and JavaScript-observable side effects
that an attacker can abuse to detect browser extensions in-
stalled by users on the Web.

• We then build a dynamic analysis pipeline, Raider, to analyze
all free extensions in the Chrome Web Store and identify
those that are fingerprintable through our proposed vectors.
We show that 2,747 extensions are uniquely identifiable.

• By applying our techniques to the Carnus dataset, we show-
case that our techniques can overcome randomized WAR
URLs. Further, our findings for Firefox highlight that the
underlying issues exist in both major extension ecosystems.

• To facilitate future research, we will open source our analysis
pipeline and the associated dataset [45].

2 TECHNICAL BACKGROUND
In this section, we provide an overview on the extensions’ archi-
tecture and explain the key concepts relevant for our study: the
(shared) global namespace in JavaScript, available client-side stor-
age mechanisms such as cookies, and event-driven communication
through postMessages.

2.1 Browser Extensions
Browser extensions are client-side add-ons, typically designed by
third-party developers to provide additional features to Web users.
Extensions have access to the powerful Chrome APIs, exposed by

Figure 1: The access-control, capabilities, and isolation
boundaries of different components in browser extensions

browser vendors, through which they can perform various oper-
ations on behalf of their users. For example, extensions can offer
bookmark management, tab customization, text assistance, pass-
word management, or ad-blocking functionalities to their users
across different browsing platforms.

Figure 1 shows different extension components and their isola-
tion boundaries. An extension includes a mandatory manifest.json
file, describing an extension’s metadata, e.g., the API & host per-
missions it holds, as well as the scripts and other Web resources
required by an extension for seamless execution. The privileged
component, i.e., the service worker (background script, in the pre-
vious ManifestV2 standards), has access to powerful APIs such as
scripting or cookies, allowing extensions to inject scripts or get
access to the cookies of the visited page, respectively. It runs in an
isolated JavaScript namespace, can communicate through messages,
and has the unidirectional ability to inject scripts into a page. The
content script is less privileged since the JavaScript executes in the
context of the visited Web page, although in a separate JavaScript
namespace from that of the page. It gets a clean reference to the
page DOM and can perform read and write operations through
the APIs available in its own JavaScript namespace [34]. This is
implemented to ensure that a malicious page cannot abuse the
higher level of privileges of the content or even background scripts.
Notably, while the actual APIs are in a separate namespace, the con-
tent script shares client-side stores such as cookies or localStorage
with the page. Additionally, extensions can inject scripts into the
page itself, either by programmatically creating and adding them
to the DOM from the content script, or by calling executeScript
from the background [14]. Importantly, the injected JavaScript then
executes with the same privileges and in the same context and
JavaScript namespace as the Web page.

An extension requires corresponding permissions to carry out
privileged operations in its background. For example, it requires the
bookmarks permission to create, search, update, or remove book-
marks from the browser of their users [11]. This, however, is not
the case with content scripts that have access to all the Web APIs
also available to a Web page by default. For instance, an extension
can invoke any IndexedDBAPIs without requiring any permissions.



Peeking through the window: Fingerprinting Browser Extensions through Page-Visible Execution Traces and Interactions CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 window.foo = "bar";
2 // Overriding the default accessor of the defined variable.
3 Object.defineProperty(window, ’foo’, {
4 get: function() { return "baz"; },
5 configurable: false
6 });
7 console.log(window.foo);
8 //Expected output: "bar", Actual output: "baz"

Listing 1: The dynamic nature of JavaScript allows to cus-
tomize the default behavior of built-in APIs & properties.

Depending upon the nature of the API permission, both these com-
ponents may still require appropriate host permission and restrict
their capabilities to these hosts [15]. The permissions (or host_-
permissions in theManifestV3 standards in Chrome) key contains
information on hosts an extension’s background can operate on.
The content_scripts key in the manifest contains script paths
with corresponding host permissions. The web_accessible_re-
sources key includes the definition of other auxiliary resources
(e.g., CSS) required for an extension’s functionality.

2.2 The Global Namespace in JavaScript
Whenever the browser renders a page, all scripts that operate on
the page share the same global object called window. This means
that both first- and third-party scripts can read each others’ global
variables, access global functions defined by each of them, and so
on. This also allows modifications to the execution environment by
any script since JavaScript’s built-in functions (e.g., the document
used to interact with the DOM or the Array constructor) are also
merely global (automatically initialized) variables. This dynamic
nature of JavaScript allows Web developers to overwrite the native
definition of nearly all the built-in APIs and properties it offers
to the Web page. For example, as shown in Listing 1 (lines 3–6),
a developer can override the native accessors of the properties
defined on the window object to alter its behavior (line 8). The
overwritten behavior of APIs affects all the JavaScript that executes
in the same global namespace. Notably, while the example shows
how to overwrite a getter of a specific property, a developer can
easily overwrite existing functions as well. Recall that the content
script runs in an isolated namespace, whereas the scripts injected
into the page by the extension (either from content or background
scripts) share the page’s namespace.

2.3 Client-Side Storage Mechanisms
We now briefly describe each client-side storage API accessible by
both the Web applications and the extensions.

Cookies: Cookies used to be the traditional way of storing data
on the client side, associated with respective hosts, before the lo-
calStorage and sessionStorage APIs were introduced. However,
modern Web applications still use cookies to store information on
users’ machines. Specifically, a browser sends cookies with all the
outgoing requests to a particular host. Extensions can set, delete, or
modify cookies on a visited Web page through scripts executing in
the context of a Web application (i.e., content scripts and WARs) us-
ing document.cookie, similar to native applications. Additionally,

extensions can also set or get cookies in their background through
the cookies permission and its corresponding APIs.

Web Storage API: TheWeb Storage API was introduced with
the HTML5 standards and enabled applications to store compara-
tively large chunks of structured data, as {key: value} pairs, on the
client side [32]. This API enforces origin-level isolation on the data
storage and access. One can store data in two different contexts: 1)
temporary data stored only for the current page session, using the
sessionStorage API, and 2) data stored to persist across sessions,
using the localStorage API. While sessionStorage only allows
up to 5 MB of data storage per origin, localStorage allows com-
paratively more data storage. Websites utilize Web Storage APIs to
store data such as user state, runtime configuration, personalization
settings, or code-caching [54]. Unlike cookies, the data stored with
these APIs remains on the client, and the browser never implicitly
sends them to an application server. Extensions operating on a given
Web origin can also access the Web Storage APIs, and store data
keyed to this origin through their content or injected scripts [33].

IndexedDBAPI: IndexedDB is a JavaScript-based object-oriented
database that allows client-side components to store extensive struc-
tured data that persists across sessions [31]. This API also enforces
origin-level access control on the data storage and accesses, sim-
ilar to theWeb Storage API. This API allows operations based on
individual transactions and executes asynchronously, i.e., without
blocking other executable code in the event loop. Web applica-
tions may store data using IndexedDB for various purposes, such
as caching of code, network responses, or other static resources,
shared with the Service Workers API [18].

2.4 postMessages & Other Runtime Events
Extension components can communicate with each other (i.e., con-
tent scripts, web-accessible resources) or with a Web page through
the postMessage API. Here, the sender, either an extension script or
a Web page, sends the message data by also optionally specifying
the message target [17]. The other party listens to the message
by registering a corresponding message handler. It is pertinent to
note that since any extension-initiated postMessages execute in the
context of the application, the effective origin of these messages is
the Web page’s origin. Thus, the Web page can also register a cor-
responding event listener and listen to all the message exchanges.
Similarly, a content script may also dispatch custom events to a page.
While it is infeasible to a priori know which events may be fired,
an extension’s injected script still needs to register a listener for
said events, which can be observed due to the necessary invocation
of the addEventListener function in the global scope.

3 THREAT MODEL
We consider an attacker who is capable of having a victim visit
their website but who cannot control a specific website. That is
if an extension only operates on Facebook, this is outside of our
threat model, as the adversary cannot gain control over that site.
More concretely, any traditional Web attacker may try to detect the
existence of one or more target extensions installed on the client
side. The attacker can use the information associated with these
extensions to infer privacy-sensitive characteristics of their visitors,
such as their geo-location, ethnicity, or religion [25]. The attacker



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shubham Agarwal, Aurore Fass, & Ben Stock

can further share this information with third-party trackers or even
use it themselves, all without the users’ knowledge or consent.

Browser extensions can interact with and store data on the client
side using storage APIs (e.g., localStorage) via content scripts
and other web-accessible resources, as also shown in Figure 2a
(line 2). In this case, an attacker application can detect any target
extension(s) installed on the client side by probing for items within
these data stores, accessible through the application JavaScript
(Figure 2a, lines 4–8). Unfortunately, none of the existing defenses
against fingerprinting prevent these observable side effects.

Next, as shown in Figure 2b, extension components may com-
municate with Web pages or even among themselves (i.e., popups
or WARs) via postMessages (line 2). They could also register other
event listeners to execute event-driven operations (e.g., scrollup,
onmouseover, other custom events) either through content scripts
or the injected code (lines 3–6). Here (as shown in lines 7–10), the
attacker JavaScript can also listen to all the postMessage exchanges
issued by the extension scripts since these scripts are injected and
executed in the same context. Similarly, the page JavaScript can
forcefully intercept or trigger runtime events registered by the ex-
tensions to induce observable side-effects, as they share the same
execution context. In this case, the attacker must know the target
events a priori to trigger them and cause any observable side effects.

As discussed in Section 2, extensions can inject JavaScript into
the visited page, either from the content script or through the back-
ground. In this case, the injected JavaScript executes in the same
context as the Web page, similar to the content script. However, in
addition, the injected code also shares the global JavaScript names-
pace with the Web page, such that its execution may cause side
effects to this namespace. For instance, as in Figure 2c (line 2), the
injected script may register event listeners, set variables in the
global scope, and access/modify native functions and properties
directly accessible to the Web page JavaScript. In this case, the
attacker can monitor the usage of these global APIs to detect the
execution traces of extension-injected code. For example, as in lines
4–6, the attacker JavaScript can iterate over all global properties
on the window to detect extension-defined ones. Thus, extensions
that inject JavaScript into arbitrary Web pages are susceptible to
fingerprinting through the execution traces of the injected code.

We assume our attacker to be sufficiently able to download all
browser extensions from the extension store [10] and run offline
analysis on them to observe their behavior and derive identifiable
signatures. The attacker could then use these signatures to detect
installed extensions and, subsequently, their users online. Notably,
the attacker only needs to run the offline analysis step for new
extensions on the store or when an existing one is updated. Here,
we only consider extensions that operate on any Web pages for our
analysis, such that an arbitrary attacker application can fingerprint
them. However, it is pertinent to note that extensions that run only
on specific pages may still be identifiable by the corresponding
applications through any of the vectors proposed in our study
(meaning that the results presented in this paper are a lower bound
of the extensions we can fingerprint with our approach).

1 // content_scripts.js
2 localStorage.setItem(’foo’, ’bar’);
3 // attacker-webpage.js
4 for (let index = 0; index < localStorage.length; index++) {
5 let key = localStorage.key(index);
6 let value = localStorage.getItem(key);
7 logStorage(key, value);
8 }

(a) Storage APIs scanning

1 // content_script.js
2 window.postMessage(’Hello from CS!’, ’*’);
3 // popup.js
4 window.addEventListener(’message’, function (event) {
5 event.source.postMessage(’Message received!’);
6 });
7 // attacker-webpage.js
8 window.addEventListener(’message’, function (event) {
9 logMessages(event.data);
10 });

(b) Intercepting postMessages

1 // injected-script.js
2 extension_key = "extension_value";
3 // attacker-webpage.js
4 for (let prop of Object.getOwnPropertyNames(window)) {
5 logProperty(prop, window[prop]);
6 }

(c) Global variables set by extensions

Figure 2: Observable Behavior of Extensions at Runtime

4 RESEARCH METHODOLOGY
Our overarching research question is: how many extensions can be
uniquely fingerprinted through the traces they leave in the global
scope of a visited page or through their otherwise visible side effects?
To answer this, we first need to identify extensions that include
scripts or have permissions that may allow them to store client-side
data, send postMessages, or inject scripts into the page. We do so by
statically analyzing the manifest files and filtering out extensions
without the necessary permissions. Subsequently, for the remaining
extensions, we need to learn which of them use the capabilities
at runtime. For this, we spawn browsers to load each extension
and visit our test page, allowing us to capture the extension’s inter-
actions with it. To then answer our main question, we determine
traces (observable side-effects) unique to each extension.

4.1 Raider: Overview
We build an automated dynamic analysis framework, Raider, to
answer the above question and detect extensions based on a.) the
execution traces on the global JavaScript namespace from extension-
injected scripts; and b.) their side effects through interactions with
client-side Storage APIs or sent postMessages. Figure 3 depicts the
high-level overview of our methodology. We start by i.) unzipping
the extensions and statically analyzing their manifest to identify
scripts that operate on <all_urls>. ii.) We then extract all valid
content scripts andweb-accessible resources as JavaScript that these
extensions declare in their manifest and determine host permissions
for individual scripts. iii.) We also check for extensions’ capabilities



Peeking through the window: Fingerprinting Browser Extensions through Page-Visible Execution Traces and Interactions CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 3: Overview of methodology: i) Extract package and parse manifest. ii) Check for valid content scripts and WARs that
operate on all URLs. iii) Check for script-injection capabilities from the background, iv) Select those extensions that have
script-injection permissions from either (ii) or (iii). v) Spawn browser instance and load extension. vi) Navigate to the test pages.
vii) Collect signatures and store them. viii) Analyze the uniqueness of signatures to confirm fingerprintability.

to inject JavaScript from the extension background. iv.) Lastly, we
select those extensions for our next stage where an extension either
a.) has at least one content script or WAR operating on any URL
(i.e., <all_urls>); or b.) has permissions to inject JavaScript into
arbitrary hosts from its background.

With the selected set of extensions, the pipeline then analyzes
their runtime behavior to collect fingerprinting signatures. The
dynamic step (v.) – viii.)) involves two different data collection
strategies: we collect the execution traces of the extension-injected
code on the global JavaScript namespace differently from the way
we capture the extension-driven interactions with the Storage and
postMessage APIs.We do this by loading extensions individually and
capturing any side effects they cause on the global namespace as
signatures through our specially crafted test page. Then, we collect
all the data set by individual extensions in any of the client-side
data stores at runtime by individually loading them in the browser
instance and polling these data stores periodically through another
test page. After collecting all data, we determine whether these
extension-driven interactions are distinct and appear consistently.
To that end, we visit the test page nine times and only consider
behavior to be relevant if it is observed in all nine visits and is
unique to one extension.

4.2 Static Pre-filtering
The first stage of our proposed methodology consists of a static
extension pre-filtering step. Here, we identify those extensions that
can inject JavaScript into the DOM, interact with storage APIs,

or send postMessages, and thus, require further scrutiny to de-
termine if they are fingerprintable, based on our threat model.
More specifically, our tool parses the manifest of individual ex-
tensions to detect any content_scripts or web_accessible_re-
sources declarations to extract relevant JavaScript files. This is
because an extension can only interact with the storage APIs or
send postMessage from these scripts. Moreover, content scripts also
enable the injection of other scripts into the page. Extensions may
also choose to execute JavaScript in the page’s context from their
background/service worker at runtime without declaring them in
their manifest, using the scripting or tabs API [14]. This per-
mission also allows extensions to inject or update content scripts
from their background at runtime. In theManifest V2 standards, this
translates to the tabs permission [14]. Additionally, extensions may
also set cookies on arbitrary domains from their background/core
through the chrome.cookies API or even inject the Set-Cookie
header within HTTP response headers, by requesting the webRe-
quest or declarativeNetRequest permissions. While extensions
can interact with the client-side storage, register event listeners, or
cause side effects to the global namespace through different scripts,
they should also operate on all URLs for any attacker application
to fingerprint them. Thus, we only consider those extensions with
sufficient host permissions that allow them to run on arbitrary
hosts, i.e., <all_urls> and equivalent. We extract the host permis-
sions specified for the content scripts, web-accessible resources,
and background scripts, remove any wildcards, and normalize them
to detect their actual operational set of hosts. This is necessary as
developers may specify match patterns instead of fully-qualified



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shubham Agarwal, Aurore Fass, & Ben Stock

domain names [8], (e.g. *://*/*, or http://*/foo*) which may still
effectively allow extensions to operate on arbitrary Web pages.
Note that we intentionally skip extensions that only have the ac-
tiveTab permission or optional_host_permissions (for MV3)
in their manifest.While this gives an extension the same capabilities
as an explicit host permission, it requires the user to actively en-
gage with the extension. This is outside of our threat model, which
does not require user intervention outside of the page. Appendix A
shows an example of extensions with valid script declarations in
the manifest relevant to our study. As shown, content_script.js will
execute on all HTTPS URLs, while storage.js and cookies.js operate
on all URLs, irrespective of the URL scheme. Thus, any website
running on HTTPS can be a potential adversary in this case, as per
our threat model described in Section 3. We note that applications
may also directly send messages to the extension core using the
chrome.runtime API [13]. However, this is only possible when the
extension intentionally opts-in to be reachable from a given website
by specifying the respective domains as externally_connectable
in their manifest [7]. Hence, we discard such extensions here.

To sum up, we select extensions for our analysis, that: i.) have
at least one valid content script or web-accessible resource running
on <all_urls>, or ii.) have valid background script running on <all_-
urls>, and request for any of the following permissions: scripting,
tabs, cookies, webRequest, or declarativeNetRequest.

4.3 Execution Traces of Injected Code
An extension’s content script can interact with the given page
through the window and the document handle. These two objects,
however, are not shared with the page itself. While any changes
through document apply to the page’s DOM, changes to the con-
tent script’s window object are opaque to the visited page. This way,
the content script of an extension cannot, intentionally or acci-
dentally, alter the behavior of the JavaScript APIs, properties, and
variables declared by the Web page JavaScript, and vice versa. In or-
der to run extension-specified code within the context of the page’s
window object, this code must be explicitly injected into the page.
Extensions can perform script injections either directly through
their content script – by using the document.appendChild API, or
through their background script – by using the scripting (or the
tabs) permission (chrome.scripting.executeScript).

Now, the extension-injected code could perform a wide array
of operations in the context and the namespace of the visited ap-
plication. More importantly, the JavaScript APIs the injected code
may utilize or the window properties that the injected code may
read or write during its execution are also shared and observable
to the Web page through its JavaScript. This behavior enables an
attacker Web application to observe, or even further, to overwrite
the native behavior of nearly all the JavaScript APIs and properties,
in that particular JavaScript namespace to monitor their usage. For
example, an attacker JavaScript can overwrite the native definition
of the Array.prototype.forEach API to actively observe any in-
vocations of this API. If an extension-injected code now invokes the
forEach operation on any array, the attacker will then be able to
observe its invocation. This capability of the Web page’s JavaScript
code can be leveraged to detect an extension’s behavior in various
ways, which we discuss in the following.

1 function __hook(object, property, api) {
2 // Preserving native definition of the function.
3 let __originalFunc = object[property];
4 // Custom definition for Global APIs
5 function __customFunc() {
6 // Extracting API related information.
7 let context = this;
8 let args = Array(...arguments);
9 // Extracting the source code of the executing code.
10 let callerData = {};
11 let caller = arguments?.callee?.caller;
12 while (caller) {
13 callerName = caller.name;
14 callerFunc = caller.toString();
15 callerData[callerName] = callerFunc;
16 caller = caller?.arguments?.callee?.caller;
17 }
18 // Capturing the stack trace of the executing code.
19 let stacktrace = new Error().stack;
20 // Sending data to our test server.
21 logToServer({ api, context, args, stacktrace, callerData });
22 // Now, returning the result from executing native function.
23 return __originalFunc.apply(this, arguments);
24 }
25 // Replacing the native definition with custom definition.
26 object[property] = __customFunc;
27 }
28
29 //Instrumenting APIs now...
30 __hook(Array.prototype, "forEach", "Array.forEach");

Listing 2: Logic to overwrite globally-accessible APIs.

4.3.1 Overwriting global APIs. We begin by discussing the steps
to overwrite the JavaScript APIs and the global property accessors,
enabling us to capture their invocations or accesses, respectively.
At the same time, we also intend to preserve the original behavior
of the overwritten components to avoid any side effects of our
instrumentation at runtime. For our purposes, this is particularly
important to ensure an extension can fully execute all of its func-
tionality, which provides ample chance to fingerprint it.

We demonstrate the steps to perform API overwrites through
Listing 2. Here, the __hook method instruments the individual
APIs to enable the logging mechanism. Concretely, it first stores
the original definition of the API under instrumentation (as __-
originalFunc in line 3). Then, it defines a custom method (here,
__customFunc as in lines 5–24) where we define the logic to capture
all the relevant invocation-associated details. It also includes the
logic to dispatch the collected data to our test server (line 21). Once
the logging is complete, this __customFunc returns the result from
the native definition of the called API through __originalFunc
(line 23). Thus, our custom definition does not affect the natural
execution flow of the injected code. In the end, we overwrite the
native definition of the API with our custom-defined logic (line 26).
This way, we instrument a total of 571 different JavaScript APIs,
accessible to both the Web page and the extension-injected code
in the global JavaScript namespace (similar to line 30) [38]. We
follow similar steps to overwrite the native definition of JavaScript
property accessors, such as document.title and window.name.
Here, we use the __lookupGetter__ and __lookupSetter__ APIs
to obtain the native definition of the property accessors. We then
overwrite them using the Object.defineProperty API. This way,
we overwrite 51 other globally accessible JavaScript properties. We
selected the global JavaScript APIs and properties that are standard

*://*/*
http://*/foo*


Peeking through the window: Fingerprinting Browser Extensions through Page-Visible Execution Traces and Interactions CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

built-in JavaScript objects [38].1 Now, we elaborate on the relevant
invocation-associated details from these instrumented APIs and
the properties we extract.

4.3.2 Relevant contextual data from API invocations. Our instru-
mentation allows us to capture different sets of data based on the
nature of the invoked API. For instance, as shown in the first ex-
ample of Appendix A, when the Array.forEach API is invoked on
foo, the value of this in the current execution context is the array
passed to the API (i.e., [1, 2, 3]). The argument is the callback that
processes the iterated element. Here, suppose an extension-injected
code invokes this API. In that case, our logger will capture three
critical pieces of information: the API name, the arguments passed,
and the value of this in the execution context (Listing 2 – lines 7
and 8). There are other APIs that are static methods of their parent
class and do not have their own context or this value (e.g., Ar-
ray.isArray in Appendix A). Here, we only capture the name of
the invoked API and its arguments.

4.3.3 Obtaining the source code of the injected code. Whenever
an executing script invokes a function, fn, the invoked function
fn also contains the pointer to its caller [36]. That is, the invoked
function has the pointer to the invoking function through the argu-
ments.callee.caller property. This is also true for the JavaScript
APIs and the property accessors in the global namespace that we
consider in this study. Through this, an attacker Web page could
extract unique caller functions or even leak the entire source code
of the script and use them as vectors to detect extensions later.
Concretely, suppose an extension-injected code invokes any in-
strumented APIs or accesses any property we instrument. In that
case, our custom method also recursively extracts the caller of the
invoked API until it is set to null. Lines 9–17 in Listing 2 show
our approach to collect caller-associated details for an invoked API.
Notably, if the caller is a.) top-level code; b.) an arrow, async, or
generator function; or, c.) runs in the strict mode, it is always set to
null, and our logger cannot capture anything. Note that reading
the source code of injected scripts could also be done through a
MutationObserver; this, however, can be easily defeated through a
ShadowDOM [28], which is why we do not consider this vector.

4.3.4 Capturing the stacktrace. The arguments.callee.caller
does not always return the handle to its caller, primarily in cases
where the entire injected code is running in the strict mode, or the
API invocation occurs on the top-level code. However, the attacker
can still capture the execution stack of the injected code up to the
point where the API invocation occurs. This stacktrace not only
provides the names of the functions called in reverse order but
also contains both the URL of the file (if the code is in an external
script) and the line number and offsets. We collect this information
by accessing the stack property of the Error object (as shown
in line 19 of Listing 2). In cases of randomly generated runtime
identifiers (both in Chrome and Firefox), the filename for scripts
included as web-accessible resources contains a random identifier.
Therefore, we consider two attacks: the full stacktrace (including
runtime identifiers) and a normalized stacktrace (for a hypothetical
case of widely adopted randomized runtime identifiers) for which
we remove the extension IDs from the trace; leaving us with the
1Please visit our repository for the complete list of hooked APIs and properties [45].

1 //Client-side storage state as polled on every 0.5 second for 10

times after page load.↩→
2 window.addEventListener(’load’, async function (e) {
3 let counter = 0;
4 setTimeout(async function run() {
5 if (counter++ < 10) {
6 await pollStorage();
7 setTimeout(run, 500);
8 }
9 }, 500);
10 });
11 // Polling data stores before page is unloaded/navigated away.
12 window.addEventListener(’beforeunload’, async function(){
13 await pollStorage();
14 })

Listing 3: Polling different data stores on page events and on
specified intervals to log data.

filename, line number, and offset. As we discuss in Section 5, both
are distinctly unique features across a vast amount of extensions.

4.3.5 Capturing global variables. To avoid polluting the global
namespaces, functionality can bewrapped in an immediately-invoked
function expression (IIFE). However, if the code injected by an exten-
sion either (a) does not use an IIFE, (b) defines a variable without a
var keyword, or (c) explicitly sets window.foo, this results in a glob-
ally accessible variable. To detect these variables, the attacker Web
page can enumerate all the properties available on the global scope.
We collect all the identifiers (i.e., variables and function identifiers)
that extension-injected code writes on the JavaScript namespace of
our test page. Here, we utilize the Object.getOwnPropertyNames
API to enumerate all the properties on the window handle and dis-
card those that are artifacts of our test page or are also seen in
the extension-less environment (e.g., browser built-in APIs). This
way, an attacker can probe for variables associated with individual
extensions to check for their presence on the client side.

4.4 Side Effects: Storage APIs and Messages
Besides direct changes to the global JavaScript scope and variables,
extensions can cause other side effects which can be polled for or
listened to from JavaScript.

4.4.1 Cookies, LocalStorage, and IndexedDB. In line with the secu-
rity model of extensions, the content scripts do not share the same
namespace with the Web page when accessing storage and cookies.
That is, an extension can invoke document.cookie from the con-
tent script to set a cookie for the page, yet the invocation is not di-
rectly observable by the JavaScript running on the Web page. How-
ever, the underlying storage/cookie values are shared, i.e., the effect
of a newly added cookie can be observed from the page’s JavaScript
realm. The same applies to both localStorage and sessionStor-
age as well as IndexedDB. Note that in Firefox, IndexedDB cannot
be polled without prior knowledge of the name of the database since
there is no implementation of the indexeddb.databases API [37],
which is why we do not collect any data for it. To observe values
injected by the extension, the attacker simply polls the storages to
see whether they contain any content. This is shown in Listing 3,
where the attacker’s code iterates over all storages every 500ms to
see if the extension stored any data. For our purposes, we do not



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shubham Agarwal, Aurore Fass, & Ben Stock

1 non_unique_features = set()
2 unique_exts = set()
3 for feature, extension_ids in feat_to_exts.items():
4 if len(extension_ids) == 1:
5 unique_exts.update(extension_ids)
6 else:
7 non_unique_features.add(feature)
8
9 for id1, id2 in itertools.permutations(non_unique_features, 2):
10 intersection = feat_to_exts[id1] & feat_to_exts[id2]
11 if len(intersection) == 1:
12 unique_exts.update(intersection)

Listing 4: Detecting uniquely identifying features

look into the exact values being written to the respective stores but
instead focus only on their overall uniqueness.

4.4.2 PostMessages. Last, but not least, the content script can di-
rectly communicate with the page through postMessage. We note
that this vector was already discussed by Karami et al. [24], yet falls
into the category of JavaScript-visible side effects, which is why
we consider it also in our work. Notably, the content script and the
page itself receive any incoming postMessage to the page. While,
again, the page’s JavaScript cannot hook into the addEventLis-
tener API used by the content script, it can nevertheless register
its own event handler to capture all incoming messages. This way,
if an extension’s content script sends a message to the other com-
ponents, this can be recorded by the attacker’s script. In our initial
experiments, we found that while the exact message content often
varies (e.g., because of timestamps or randomized values), the keys
of messages (when using JSON messages) remained stable.

4.5 Data Collection and Identification
To test an extension, we install its crx file in a fresh browser instance
and visit our specially crafted test pages. Here, the first test page
constitutes hooks, as described in Listing 2, and captures the execu-
tion traces of any extension-injected code. In the second test page,
we poll individual data stores for any data and enumerate global
variables set by extensions, as in Figure 2. Since the test pages and
the tools used by prior works are not publicly available [24, 48, 53],
we could only obtain a prototypical honey page used by Karami
et al. [24]. We include all the elements (e.g., iframes, audio/video
tags, etc.) from the Carnus honey page. We further enhance our test
pages by triggering a wide range of mouse and keyboard events on
page load, corresponding to Table 1. in [48], through dispatching
a series of JavaScript events. Here, we dispatch keyboard events
for all possible keys and their hotkey combinations. Similarly, we
also send mouse events for different elements (i.e., text-selections,
image, form fields, etc.). Naturally, extensions that do not react to
JavaScript-induced events (i.e., check the isTrusted property of
the event object) will not be triggered. In the end, we collect and
dispatch the execution traces to our backend for processing.

Our instrumentation and test pages provide us with the ability
to observe changes that an attacker could also observe. However,
extensions may use random variable names or use timestamps
for keys and values, i.e., a single run does not suffice to identify
persistent features of an extension. To account for that, we visit our
pages three times per run for each extension to see which extensions

leave any trace that an attacker might observe. We perform this run
for a total of three times for each of these extensions that exhibited
such a behavior. This way, if a feature occurs repeatedly, it cannot
be due to random chance but is instead deterministic.

We first extract all the API invocations, variables, messages, etc.,
for each extension in the dataset and aggregate the number of oc-
currences (here dubbed visits) in which the feature was observed.
Subsequently, we iterate over all the features to identify those that
occur repeatedly. For each such feature, we use it as the dictionary
key to store those extensions that use the given feature (repeatedly).
From this dictionary, we can already trivially find all those exten-
sions that are uniquely identified by a feature. If, for a given feature,
the length of the set is exactly 1, this feature uniquely identifies
an extension (as shown in line 4 of Listing 4). For all extensions
that cannot be detected by a single feature, we try combinations
of two features that might be unique to a single extension. Here,
we iterate over all combinations of features (within each class, so,
e.g., all cookie names are combined) to see if the intersection of
the extensions that exhibit that feature is 1. In that case, the at-
tacker who monitors an extension’s behavior and observes these
two features can conclusively say that the given extension must be
installed. Note that the approach could be expanded to also contain
3-tuples of features. However, this significantly increases runtime
(which is the cubic relative to the number of features), which is why
we did not consider this in our work. Moreover, experimentally,
we could verify that all but two extensions in our dataset were
fingerprintable through only a single feature within the same class.

5 EVALUATION & RESULTS
With our framework, we now perform an analysis of three different
datasets to showcase the potency of our attacks. For this, we first
collected all the free extensions from the Chrome Web Store and
Mozilla Add-ons Store, available as of January 3rd, 2024. We refer
to them as Raider and Firefox, respectively. Then, we also gathered
the dataset from Karami et al. [24], referred to as Carnus, along
with the fingerprinting labels from the original findings. In our
study, we use these datasets to run our experiments and understand
the trend of fingerprinting behavior in the extension ecosystem.
Table 1 shows an overview of the datasets we use. Note that our pre-
filtering step to identify extensions that do not have the necessary
permissions reduces the total number of extensions to consider
further. In particular, the largest datasets are ours (Raider) and the
one from Carnus with almost 40k extensions each; Firefox contains
less than 10k extensions. In the following, we analyze those datasets
separately: first our Chrome dataset Raider, which we subsequently
compare with Carnus. Finally, we consider Firefox.

For each dataset, we first conduct two runs on the entire dataset.
In each run, we visit our test page three times. This total of six page
loads is meant to ensure that as many extensions as possible show

Dataset Downloaded After Pre-Filter

Raider 156,997 37,697
Firefox 26,591 9,488
Carnus 104,484 39,890

Table 1: Extension datasets overview

https://chrome.google.com/webstore/category/extensions
https://addons.mozilla.org/en-US/firefox/


Peeking through the window: Fingerprinting Browser Extensions through Page-Visible Execution Traces and Interactions CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Method Usage Repeated Unique Only Installs

Global APIs 1,878 1,872 1,769 - 109,584,572
- Stacktrace 1,878 1,871 1,753 397 108,382,340
- Norm. Stacktrace 1,878 1,871 1,569 (237) 103,582,524
- Caller & Params 1,878 1,868 813 2 32,740,589
Variables 1,730 1,664 1,301 245 67,048,809

Cookies 201 198 154 78 4,709,235
Storage 634 623 391 266 8,317,933
IndexedDB 128 126 32 17 1,580,655
PostMessages 1,069 1,028 737 283 38,519,471

Cross-class 1,634 1,610 1,257 0 48,466,020

Total 3,398 3,308 2,747 - 169,093,032

Table 2: Results for the Raider dataset

any behavior. We then retain as our dataset for the next step all
those extensions that exhibited any attacker-observable behavior
at least once.

Subsequently, we run three more times for each extension that
exhibited some behavior before to capture the consistent runtime
characteristics across multiple runs. Thus, we visit our test page a
total of nine times per extension. However, in reporting numbers
for fingerprintable extensions, we only rely on those that showed
precisely the same fingerprintable feature in all nine visits across
the three runs, i.e., we provide a lower bound.

5.1 Raider Dataset
Extension Detection. Table 2 shows our findings on the Chrome
dataset2. 3,398 extensions make use of some browser functionality
that could be observable by an attacker. Over half of them are related
to global APIs being invoked by the injected code. Notably, 1,730
of these extensions pollute the global namespace with variables.
Overall, the usage of IndexedDB is very limited (128 extensions),
yet we see that all of our analyzed features are in use by extensions.

Notably, as discussed before, not all invocations, storage ac-
cesses, and messages are deterministic. Consider the example of
postMessages: here, extensions may send a message that includes a
timestamp in a key. This means that the structure of the message
changes. In our analysis, we found that 1,028 / 1,069 extensions send
messages with the same structure repeatedly. However, even in that
case, if two extensions send the exact same message, an attacker
cannot tell those two extensions apart. This is highlighted by the
fact that 737 / 1,028 of extensions that send deterministic messages
actually send uniquely identifying messages.

Overall, we find that 3,308 / 3,398 (97%) extensions have some
features that occur deterministically. Out of those, we can uniquely
identify 2,747. We also see that the stacktrace is the single most sig-
nificant contributor to identifying extensions uniquely. 1,753 / 2,747
(64%) of extensions that are fingerprintable within their group are
detectable through the stacktrace alone. Notably, this is signifi-
cantly higher than the caller’s code, which initially seems counter-
intuitive. However, our manual analysis showed that extensions
frequently leverage libraries. These libraries frequently make use
of JavaScript’s strict mode, which disables the usage of arguments,
thereby rendering the caller attack infeasible. However, this does
not turn off the stacktrace. Considering the normalized stacktrace

2Note that the Total row is not the sum of the other rows, as extensions often exhibit
multiple classes of attacker-observable behavior.

(i.e., removing extension IDs from the traces) still allows us to detect
1,569 extensions. Note that out of the 397 extensions that could only
be fingerprinted through the full stacktrace, 237 would have also
been only fingerprintable through the normalized stacktrace. This
is important given that if Chrome was to widely adopt randomized
runtime identifiers for extensions, the vast majority would still be
fingerprintable due to the unique nature of filenames, lines, and
line offsets in the call stacks.

We note that while the stacktrace is the most potent attack, all of
the other vectors, except for the parameters and the caller code, add
fingerprinting surface. (The Only column in Table 2 represents the
number of extensions fingerprintable exclusively through that indi-
vidual vector.) Even the rarely occurring IndexedDB vector allows
us to identify 17 extensions that could not otherwise be detected.
Finally, we consider cross-class fingerprints, i.e., those where single
features are insufficient to identify an extension, yet combining
two features from different classes suffice (e.g., a registered vari-
able together with a specific cookie). The fact that 1,257 extensions
can be fingerprinted through cross-class features highlights that
extensions frequently exhibit several types of attacker-visible ac-
tions. Finally, if we were to disregard the postMessage vector (as
already discussed by Karami et al. [24]), 2,464 extensions would be
fingerprintable (as extensions are often unique by multiple vectors),
showing the impact of our newly proposed vectors.

The discovered fingerprinting attacks have an impact on a large
user base (based on the installation counts from the Chrome Web
Store). Note that the numbers are lower bounds, as the Store pro-
vides only inaccurate numbers for popular extensions (e.g., 1,000+).
Overall, the extensions that our attacker models can fingerprint
are installed by a total of over 169M users (please refer to Ap-
pendix A for more details). The most prominent examples are the
Malwarebytes Browser Guard and MetaMask, each with over 10M
users. Both are fingerprintable through their usage of global APIs
by unique stacktraces. In particular, Easy Ad Blocker is another
noteworthy example since adblocker blockers can easily detect the
presence of the extension. The reported extensions also span across
22 different categories, as listed in Appendix A.

The number of extensions fingerprintable at least once in any
of the runs is slightly higher (2,760). However, the additional 13
extensions did not show the same behavior in all three runs, which
is why we exclude them and provide a lower bound.

Multi-Extension Analysis. So far, we only focused on individual
extensions and their fingerprintability based on the vectors we
proposed. However, users often install multiple extensions that may
interfere with each other’s behavior at runtime. In turn, this may
impact the fingerprintability of these extensions in the presence
of others or, vice-versa, detections of extensions that do not show

N 2 3 4 5 6 7 8 9 10 Avg.

TP (%) 99.7 99.4 99.3 98.8 97.5 96.6 96.4 97.5 97.4 98.0
FN (%) 0.3 0.6 0.7 1.2 2.5 3.4 3.6 2.5 2.6 1.9
FP (%) 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.5 0.4

F1 (%) 99.7 99.5 99.3 99.2 98.5 98.1 97.9 98.5 98.4 98.8

Table 3: Multi-extension results (average over five runs)

https://chromewebstore.google.com/detail/malwarebytes-browser-guar/ihcjicgdanjaechkgeegckofjjedodee
https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn?hl=en
https://chrome.google.com/webstore/detail/easy-ad-blocker/naffoicfphgmlgikpcmghdooejkboifd?hl=en


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shubham Agarwal, Aurore Fass, & Ben Stock

any behavior when run in isolation (e.g., because they require a
postMessage to trigger functionality). To test the robustness of our
approach, we now analyze the fingerprintable extensions reported
by Raider in two different multi-extension settings.

Setting 1: Fingerprintable extensions only First, for each
extension, we combine it with a set of N-1 other randomly selected
extensions reported as fingerprintable, where N ranges from 2 to
10, and load them in the browser to visit the test page and collect
the fingerprints. This is analogous to the tests performed by Karami
et al. [24]. We then collect all potentially identifying features (i.e.,
all of the vectors we consider) and store them in a database. Since
we know the ground truth of extensions that were installed, we
then compare if the behavior observed at runtime can be attributed
correctly to the extensions actually loaded during the test. Table 3
shows the results for our multi-extension test with different values
of N. We observe that our proposed vectors are able to accurately
detect extensions in ∼98% cases, even when loaded with multiple
other extensions with similar runtime behavior. Across all different
values of N, we have an average of 1.9% false-negative cases where
Raider cannot detect an extension when present. On manual inspec-
tion, we found that some extensions execute blocking JavaScript
code which then delays the execution of the code injected by other
extensions and our tool fails to capture their invocations after 30
seconds. In other cases, we saw that some extensions also mask
the behavior of others through their operations (e.g., by themselves
hooking into APIs, and thus, hindering attribution through the
stacktrace).

We also measured an average of 0.4% falsely-labeled cases where
our tool detected an extension that was not loaded in the tests (note
that we count this relative to the number of fingerprintable exten-
sions). We investigated this further and found that many extensions
react to the operations executed by other extensions during the
tests (e.g., code injections, global variables, postMessages, etc.) and
thus, create new but overlapping execution traces for extensions
that are not installed, which eventually leads to false attributions.
For instance, one extension set the global variable (web3) only in
the multi-extension tests but not during individual tests. Since this
variable was only observed by one other extension in the single-
extension tests, we falsely flagged said extension as being detected.

Setting 2: All candidate extensions Orthogonally to the previ-
ous case, which assumes a user would install N extensions out of a
small set of the fingerprintable ones, we also investigated the case
of randomly choosing nine other extensions from the 37k exten-
sions which could potentially interact with the page (see Table 1).
We instantiate fresh browser instances with these 10 extensions
installed and then perform our tests. We do not select an extension
more than once to cover as many extensions in our tests as possible.
As before, we collect the data and analyze it in the backend to deter-
mine the uniqueness of the collected signatures. Note that not all
extensions that fulfill the static requirements in their manifest can
actually be loaded without error. Therefore, in some cases, less than
10 extensions were loaded. As with the previous multi-extension
tests, we perform these tests five times here as well with different
combinations of extensions.

Our tests indicated that out of 2,747 extensions, which were
consistently fingerprintable (see Table 2), on average 2,680 (98%)
were successfully loaded for each of the five runs. We believe this

Method Usage Repeated Unique New No WAR

Global APIs 894 889 712 37 207
- Stacktrace 894 889 699 37 -
- Norm. Stacktrace 894 889 627 37 186
- Caller & Params 894 885 429 31 120
Variables 1,136 979 638 47 208

Cookies 80 78 31 8 15
Storage 423 419 242 93 149
IndexedDB 15 14 11 3 8
PostMessages 497 474 273 14 34

Cross-class 775 764 474 18 125

Total 2,119 1,943 1,355 180 484

Table 4: Results for the Carnus dataset

to be a side-effect of Selenium crashing for some extensions (for
unknown reasons), the chance of which is exaggerated due to us
testing ten extensions in parallel. We collected the information
on the successfully loaded number of extensions for each test by
navigating to the extension page and enumerating the loaded set
of extensions using Selenium. Of these 2,680 extensions that were
successfully loaded, our tool accurately detected 99.1% of them in
the second multi-extension setting (averaged over five runs). For
the remaining 0.9%, the side effects from other extensions masked
the behavior that allowed us to fingerprint them in the single-
extension case.We note that thismay relate to our test pages loading
significantly slower in the presence of multiple extensions.

Similar to the previous multi-extension setting, we found 0.5%
false-positive cases where we detected an extension that we did not
load for the tests. Here, the falsely detected set of extensions and the
false-positive rate are in line with the previous multi-extension set-
ting. Overall, the fingerprinting rates of extensions across different
multi-extension settings are similar. Since we randomly sampled
almost our complete dataset (i.e., 34,774 / 37,697 extensions with
permissions to interact with the page across five runs) for our ex-
periments, we do not believe that the false-positive rate would
be significantly higher across other combinations of extensions
installed by the user.

5.2 Carnus Dataset
As a second dataset, we rely on Carnus’ [24] set of extensions
we received from the authors. Fortunately, the authors provided
us with the complete test dataset, i.e., both fingerprintable and
non-fingerprintable extensions, as reported by them. This labeled
dataset allows us to see howmany additional extensions our attacks
can fingerprint on top of Carnus’ methods. Overall, Carnus can
detect 29,428 extensions, the vast majority of which is identifiable
through WAR-based methods (25,866). We note that since their
work, browsers have introduced the option to enable dynamic URLs
for WARs [39]. This means that extensions can opt to no longer use
a deterministic identifier for the WARs but, instead, a randomized
one that resets on reloading the extension or restarting the browser.
If this is set, an attacker can no longer probe for specific resources,
as the random runtime identifier is not mapped to an extension.

In line with our approach for Raider, we confirm that exten-
sions are fingerprintable in all three repetitions of the analysis run.
We find that 1,355 extensions are consistently identifiable by our
methods. Considering the direct comparison with Carnus, 180 of



Peeking through the window: Fingerprinting Browser Extensions through Page-Visible Execution Traces and Interactions CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Method Usage Repeated Unique Only

Global APIs 436 432 367 -
- Norm. Stacktrace 436 432 353 0
- Caller & Params 436 423 182 14
Variables 359 351 288 79

Cookies 25 24 19 14
Storage 85 84 55 43
IndexedDB - - - -
PostMessages 176 172 138 54

Cross-class 314 305 242 0

Total 689 682 572 -

Table 5: Results for the Firefox dataset

these extensions were not fingerprintable through Carnus’ tech-
niques (i.e., they were not contained in the list shared with us by
the Carnus’ authors). However, their approach relies on a signif-
icant fraction of extensions with unique WAR URLs. Therefore,
Table 4 also shows how many extensions we could detect that
Carnus could not if randomized runtime identifiers were enabled
(dubbed No WAR). Here, we find that our approach would still be
able to fingerprint 484 extensions that Carnus would not be able
to fingerprint anymore. For a fair comparison, we considered only
the normalized stacktrace here, as the full stacktrace would also
be affected by randomized runtime identifiers. This highlights that
even if WAR-based fingerprinting becomes infeasible, our attacks
add significant fingerprinting surface to the state of the art, which
can also not be overcome by existing defense mechanisms. More
importantly, our fingerprinting techniques cannot be overcome
easily by readily-available countermeasures in modern browsers.

5.3 Firefox Dataset
Last but not least, we turn our attention to the Firefox dataset.
Overall, the number of considered extensions is significantly lower
than the Chrome store datasets of both Raider and Carnus. This is
also observed in themuch lower number of extensions that have any
behavior that our attacker model could observe. As with Chrome,
the most potent vectors for Firefox are also stacktraces, which allow
for the detection of 353 extensions. We note that Firefox already
automatically randomizes runtime identifiers. Therefore, Table 5
also omits the stacktrace row, as we can only rely on the normalized
stacktraces. The variables are the second-most potent vector as 288
of these extensions also set global variables in the shared namespace
leading them to be fingerprintable. Our findings highlight that the
potential for fingerprinting through our vectors does not only affect
the Chrome extension ecosystem, but the patterns exhibited by the
extensions also generalize to Firefox. Again, the numbers present a
lower bound as all 572 extensions could be fingerprinted in three
separate runs (i.e., nine distinct visits).

6 DISCUSSION
In this section, we discuss our disclosure and limitations, followed
by an overview of existing defense mechanisms (and why they are
insufficient for our attacks). Finally, we discuss potential counter-
measures to mitigate the identified vectors.

6.1 Ethics and Responsible Disclosure
As we plan to open-source our pipeline to allow for follow-up re-
search, adversaries could use these fingerprints to identify users.
Thus, in October 2023, we followed best practices in notifications [55,
56] and informed the developers of the Chrome and Firefox exten-
sions reported by our pipeline. We provided the developers with a
proof-of-concept testbed, allowing them to test and limit the finger-
printability of their extensions against our vectors in the future [45].
So far, we sent out notifications for a total of 1,594 Chrome and
273 Firefox extensions. 30 developers replied to our notification.
16 of them positively acknowledged the underlying issue in their
extensions. Six of them did not understand the threat and followed
up further. In contrast, four developers mentioned that security
and privacy is not their primary concern or that “it should be the
platform’s responsibility to take care of such issues”. Another four de-
velopers indicated that it is a known problem but also unavoidable
for their functionality (e.g., crypto-wallet extensions).

Furthermore, we discussed with three developers who showed
interest in understanding the problem in detail as well as finding
potential solutions for individual cases. They indicated that they
inject scripts for including third-party libraries (e.g., React libraries),
creating overlays, loading fonts, and so on, which are crucial to
the extensions’ functionalities. They also mentioned the lack of
dedicated API (in the current architecture) that injected scripts
could use to communicate with other extension components (i.e.,
content scripts or popups) instead of using the postMessage API. To
summarize, all three developers were unaware that their extensions
were fingerprintable and positively acknowledged our findings.
Two of them also affirmed that they will try to reduce the usage of
the fingerprinting vectors we uncovered wherever possible.

6.2 Limitations
We utilize a hybrid analysis pipeline in this study to detect uniquely
identifiable extensions with respect to the newly discovered fin-
gerprinting strategies discussed in this paper. However, we strictly
note that our tool only reports a lower bound of all the potentially
identifiable extensions available in the stores due to certain lim-
itations (and design choices) of our approach. In the first stage,
we filter out extensions that do not contain a valid declaration of
content scripts, background scripts or WARs with appropriate host
permissions (as discussed in Section 4.2). However, extensions can
also inject or update content scripts from their background, using
the scripting, tabs, or activeTab permissions. While extensions
may request any of these permissions to inject scripts at runtime,
they may only exhibit this behavior on specific hosts. For example,
OffShip - Online Shopping Carbon Offsets has script injection capa-
bilities on <all_urls> but only injects something on the Amazon
andWalmart domains, through the location check at runtime.

Next, our dynamic step necessitates extensions to exhibit consis-
tent runtime behavior on our test page. This has certain limitations.
i.) An extension may cloak its runtime behavior through runtime
logic. ii.) In cases where the extension-injected code executes before
the test page JavaScript, we do not capture any data from the tests.
This, in particular, is due to the race condition when extensions
inject code on document_start, and the injected code may execute
before any script on the attacker page [16]. To not be impacted by

https://chrome.google.com/webstore/detail/offship-online-shopping-c/aadmehcjdafbpjphopfblimohebmdpgk


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shubham Agarwal, Aurore Fass, & Ben Stock

the side effects of race conditions or inconsistent runtime behavior,
we only considered extensions that showed consistent results for
nine visits on our test page and omitted other cases from our find-
ings. However, other extensions could still be identifiable through
multiple visits to the attacker page, thus, our results present a lower
bound of the fingerprintable extensions we uncovered. Also, our
polling approach does not work for extracting IndexedDB data in
Firefox since the API to enumerate over all available databases,
i.e., indexeddb.databases, is not implemented for Firefox [37].

6.3 Existing Fingerprinting Defenses
Prior work has suggested specific mitigation techniques for their
detected fingerprinting vectors. For instance, creating Shadow or
Parallel DOM, as proposed by Laperdrix et al. [28] and Karami et al.
[25], that is inaccessible to the Web page JavaScript, can only pre-
vent DOM and style-based fingerprinting. Similarly, the preventive
strategies by Trickel et al. [59] only tackle DOM-based side effects.
More importantly, none of the existing anti-fingerprinting defense
strategies could protect extensions against the set of vectors we pro-
posed in this study. This is due to the underlying architecture, such
that the extensions, although in different processes, have shared
access to the client-side storage. Moreover, the injected scripts also
execute in the same JavaScript namespace as the visited Web page.
Next, Sjösten et al. [46] suggest randomizing the pointers to the
web-accessible resources included by extensions, which can be en-
abled nowadays through the use_dynamic_url key [39]. At the
time of our study, we only observe 109 fingerprintable extensions
using this option. Note, however, that our approach would still
allow extensions to be fingerprinted, even if they all used random-
ized dynamic pointers to WARs. In particular, we found that even
removing randomized parts of the URLs within the collected stack-
traces leaves sufficient entropy through line numbers and offsets
to uniquely identify extensions.

6.4 Extension Ecosystem & Standards
The Manifest V3 standards for extensions hosted on the Chrome
Web Store have certain restrictions and built-in protection mech-
anisms in place to protect against many critical security vulner-
abilities and privacy leaks due to the underlying design changes.
The features introduced, such as blocked remote-code inclusion
and strict CSP rules, may help limit security issues on the client
side that originate from extensions. However, extensions can still
be fingerprintable with respect to our proposed vectors, as they
often inject code that executes in the applications’ context, thus
causing observable side-effects. This supports our findings, given
that 1,611 / 2,747 of the fingerprintable extensions we detected are,
in fact, Manifest V3 standards. Besides, our proposed fingerprinting
strategies are not limited to the Chrome extension ecosystem and
also apply to Mozilla Add-ons and other extension stores. We show
the versatility of our approach by running our tests on Firefox exten-
sions, as discussed in Section 5.3, as the underlying Web Extensions
architecture is similar across the extension ecosystems [35].

6.5 Recommendations and Mitigation Strategies
In this section, we discuss ways in which developers can avoid
exposing fingerprintable behavior to an attacker. We first discuss

how to partially stop attacker code from hooking into APIs, discuss
how to ensure variables do not leak to the global scope, provide
alternative means of storing client-side information, and finally
outline how to avoid postMessages being captured.

Global APIs. Unfortunately, it would be non-trivial for extension
developers to prevent observable side effects caused by injected
code, because of the underlying extension architecture. In fact,
there are legitimate use cases where extensions may require code
injection into the context and the namespace of the visitedWeb page.
Thus, preventing extensions from injecting code will limit their
functionality. To ensure that an attacker-controlled page cannot
hook into APIs called by extension code, the extension developer
has two options: run all their code which uses the APIs before
the attacker’s code executes or ensure that these APIs cannot be
overwritten. Note that storing clean references for later use would
most likely again leave traces (as this requires additional variables).
To allow for this approach to work, the extension code, therefore,
needs to run before the attacker’s code.

An extension can, at the earliest, inject a script into the page
at document_start, i.e., when the browser parses and renders the
HTML content. For MV2 extensions, we empirically validated that
if an extension injects an inline script (i.e., a programmatically cre-
ated script element with an innerText property), this will execute
before any page JavaScript. However, the scripts injected through
their URL (i.e., the script.src property) execute after the page
JavaScript; thus, they are observable by an attacker3. For MV3, in-
jection of inline scripts is no longer possible since the minimum
CSP constraints for content scripts does not allow inline script in-
jections [40]. However, extensions can specify that a content script
should run in the MAIN world [19] (i.e., is injected directly into
the page). Here, we confirmed that the extension code reliably runs
before the page JavaScript.

One can prevent a JavaScript API from being overwritten by
freezing their native definition through the Object.freeze API,
thus, maintaining the integrity of respective APIs [41]. Extension de-
velopers could use this mechanism to freeze the native definition of
all global JavaScript APIs, through the content script that executes
in theMAIN world, before any page JavaScript executes. This would
prevent the attacker from capturing any execution traces at runtime.
However, this only works for the APIs and properties associated
with global JavaScript objects (i.e., Array.prototype, String.prototype,
etc.), while the windowAPIs and properties (i.e., postMessage, set-
Timeout, etc.) cannot be frozen. We extracted the unique features
that we collected for 1,769 extensions fingerprintable through the
global APIs from the Raider dataset. We found that 829 of these will
still be fingerprintable after freezing all possible JavaScript APIs
in the global namespace. We note that freezing global JavaScript
objects might also cause unintended side-effects to benign websites
which may extend or overwrite these APIs for their functionality.

Variables. Further, developers could avoid fingerprinting through
global variables by either scoping them appropriately (e.g., through
the var keyword) or wrap the injected code within an Immediately
Invoked Function Expression (IIFE), since the execution context of
an IIFE is destroyed right after it executes. This way, no function

3More details on the tests at https://raider-ext.github.io/raider/tests/



Peeking through the window: Fingerprinting Browser Extensions through Page-Visible Execution Traces and Interactions CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

definitions would pollute the global scope. Naturally, if an extension
needs to register global variables for interaction with a page, devel-
opers might intentionally expose variables. Therefore, any change
in such exposure would imply a negative effect on the functionality.

Storage APIs. While extensions may need to store runtime infor-
mation related to visited websites (e.g., preferred UI settings), this
can serve as a source of entropy for tracking users. In this case, ex-
tension developers should utilize the chrome.storage API instead
(by replacing the localStorage invocation with chrome.storage
in the code), where the storage container is accessible only to indi-
vidual extensions. Further, suppose an extension needs to store a
large chunk of data on the client side, i.e., in the IndexedDB. In that
case, we recommend that developers store the data in the exten-
sions’ context, keyed with their origin, instead of setting them in
the Web context [9, 12]. Similarly, we recommend that developers
do not set cookies on arbitrary domains since an attacker can also
observe them through JavaScript or in an incoming request to the
attacker-controlled server.

Messages. Assuming the extension can inject its code before the
page JavaScript executes, it can ensure that postMessages are only
relayed after filtering out the extension-sent ones. Specifically,
the extension can overwrite the addEventListener API and win-
dow.onmessage property to ensure that if an event handler is reg-
istered, the handler is only invoked if a message does not originate
from the extension. Doing so, the attacker will be unable to recover
extension-sent messages. However, this leads to an overwritten
global API, which could be used as a vector for fingerprinting yet
again. Thus, the defense only works if multiple extensions rely on
the same approach to ensure a greater anonymity set.

Separated execution of extension-injected scripts. Orthogonally, sim-
ilar to ShadowDOM, extensions could also have access to a “Shad-
owWindow“ object, which would provide them with a separate
global namespace. Thus, any extension-incurred changes (e.g., vari-
able registration, API usage, etc.) would not be visible to the Web
page JavaScript. This aligns with the ongoing discussion among
the stakeholders of the WebExtensions framework [60]. Overall,
we also urge browser vendors to take the necessary steps toward
upgrading the isolation boundaries of the extensions in this regard.
Unfortunately, evaluating the unintended side-effects of this stricter
isolation approach would be non-trivial, as it is extremely challeng-
ing to automatically infer whether an extension developer actually
wanted to interact with the page’s global object or not.

7 RELATEDWORK
Browser Extension Fingerprinting. In 2017, Starov and Nikiforakis
[53] first quantified the fingerprinting characteristics of Chrome ex-
tensions based on the extensions’ interaction with the DOM. They
instrumented the content scripts of the extensions to create the re-
quired DOM structure on the fly, and they captured the extensions’
runtime interactions with the DOM. However, this fingerprinting
strategy does not work for content scripts now, as they share a
different DOM handle and are not accessible to the Web page [34].
In 2020, Karami et al. [24] automated Chrome extensions’ finger-
printing based on their interaction with the DOM and through
their communication patterns with different client- and server-side

components, including postMessages. They built honeypages, based
on the extensions’ description provided by the developers, to trig-
ger the extensions’ runtime behavior. In 2022, Solomos et al. [49]
leveraged the MutationObserver to capture any DOM modifications
attributed to individual extensions during execution. In fact, pre-
vious work only compared the DOM before/after execution, thus
missing the invisible and transient interactions that happen during
execution but are not observable after execution anymore. Finally,
they also showed that user-induced runtime events, such as key-
board and mouse events, could increase the extensions’ interaction
with the DOM [48], and thus, their fingerprintability.

The above studies only focus on DOM-based interactions be-
tween extensions and websites. Instead, we focus on a set of finger-
printing vectors that are agnostic to DOM-based side effects. We
show that the execution of extensions’ injected scripts in the realm
ofWeb application could leave traces in the global JavaScript names-
pace (e.g., global variables). This is because the attacker JavaScript
can overwrite the global JavaScript APIs and properties to capture
their invocations, which then adds to the fingerprinting surface for
extensions [29]. Moreover, we highlight that any interactions with
the client-side Storage APIs and other global JavaScript APIs in the
applications’ context further aid in fingerprinting extensions.

In 2017, Sjösten et al. [47] showed that browser extensions are
identifiable through the web-accessible resources (WARs) they in-
clude on different websites. In 2019, they further found that track-
ing websites could probe for these included resources even when
the browser randomizes the extension runtime identifier used to
fetch these resources [46]. Fortunately, the current extension ar-
chitecture mitigates any attempt of WAR-based fingerprinting by
opting into dynamic URLs [39]. Around the same time, Starov et al.
[52] showed that unnecessary code bloats within extensions could
also serve as a fingerprinting vector. In 2021, Laperdrix et al. [28]
showed that extensions could also be fingerprinted based on the
stylesheet injection patterns observable from Web pages. Overall,
these fingerprinting techniques are orthogonal to the set of vectors
we introduce in this study. In fact, we investigate the observable
side-effects of the execution of extension resources, even when
the attacker application cannot probe for an extension’s existence
because of security measures in place at runtime.

Browser Extension Fingerprinting Defenses. In 2019, Trickel et al.
[59] proposed a mitigation technique to counter DOM-based exten-
sion fingerprinting. By randomizing the DOM element identifiers,
an attacker can no longer attribute them to individual extensions.
In 2022, Karami et al. [25] suggested having a separate copy of the
actual DOM, a Parallel DOM, for page-based interactions vs. a User
DOM for the extension-based interactions and inaccessible to the
Web page. This is similar to the concept of Shadow DOM, proposed
by Laperdrix et al. [28] in 2021, to isolate the website’s view and the
extensions’ view of the DOM. In 2022, Solomos et al. [48] suggested
using the isTrusted property of events when listening to them to
avoid side effects of fake events dispatched by the attacker. Unfortu-
nately, none of these defense strategies protect extensions against
the set of fingerprinting vectors we discuss in this paper. This is be-
cause extensions may cause observable side-effects on the window
(e.g., window.localStorage or globally-accessible variables), even
observable to an attacker with a restricted view of the DOM.



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Shubham Agarwal, Aurore Fass, & Ben Stock

Malicious &Vulnerable Extension Analyses. Several researchers have
discovered malicious extensions that perform unwanted actions
on target websites, such as ad injections, social-media hijacking,
malware downloads, etc. [3, 22, 23, 44, 58, 61]. In particular, Hsu
et al. [21] conducted a longitudinal and comparative analysis of
security-noteworthy extensions. Pantelaios et al. [43] also discov-
ered that extensions could receive updates, making them turn mali-
cious after being added to the ChromeWeb Store. In particular, Hsu
et al. [21] conducted a longitudinal and comparative analysis of
security-noteworthy extensions. Chen and Kapravelos [6] utilized
taint-tracking to find extensions that leak privacy-sensitive user
data to third-party websites. Somé [51], Fass et al. [20], and Yu
et al. [62] showed that message-passing APIs could be abused to ex-
ploit browser extension capabilities, allowing an attacker Web page
to perform privileged operations on the client side. Agarwal [2]
showed that extensions often alter security-related HTTP headers
to implement functionalities, although by degrading the security of
the target website. In 2023, Kim and Lee [26] asserted that malicious
websites could exploit over-privileged extensions to escalate their
privileges and perform different attacks. For our study, we do not
explicitly analyze extensions to detect any malicious or vulnerable
characteristics that may lead to security issues on the client. Rather,
we detect installed extensions on a user’s machine. An attacker can
subsequently learn privacy-sensitive user information associated
with an extension or even exploit known vulnerabilities within an
extension to perform malicious operations.

8 CONCLUSION
Browser extensions are omnipresent and, therefore, a prime target
for fingerprinting. We extend the state-of-the-art research by intro-
ducing two new fingerprinting vectors: (1) the execution traces on
the global JavaScript namespace from extension-injected scripts;
and (2) the side effects of extensions’ interactions with client-side
Storage APIs and postMessages. Doing so, we found that 2,747
current Chrome extensions, installed by almost 169M users, can
be fingerprinted. Importantly, the discovered attacks affect the
Chrome and Firefox ecosystems alike, highlighting that insecure
coding practices that lead to exposing fingerprintable information
to the attacker’s page occur frequently and across browsers.

ACKNOWLEDGMENTS
We would like to thank our reviewers for their valuable feedback.
This work was conducted in the scope of a dissertation at the
Saarbrücken Graduate School of Computer Science.

REFERENCES
[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking
mechanisms in the wild. In CCS.

[2] Shubham Agarwal. 2022. Helping or Hindering? How Browser Extensions Un-
dermine Security. In CCS.

[3] Anupama Aggarwal, Bimal Viswanath, Liang Zhang, Saravana Kumar, Ayush
Shah, and Ponnurangam Kumaraguru. 2018. I spy with my little eye: Analysis
and detection of spying browser extensions. In IEEE Euro S&P.

[4] Pouneh Nikkhah Bahrami, Umar Iqbal, and Zubair Shafiq. 2022. FP-Radar: Lon-
gitudinal measurement and early detection of browser fingerprinting. In PETS.

[5] Yinzhi Cao, Song Li, Erik Wijmans, et al. 2017. (Cross-) Browser Fingerprinting
via OS and Hardware Level Features. In NDSS.

[6] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Information
Leakage from Browser Extensions. In CCS.

[7] Chrome Developers. 2014. externally_connectable. https://developer.chrome.
com/docs/extensions/mv3/manifest/externally_connectable/

[8] Chrome Developers. 2017. Match Patterns. https://developer.chrome.com/docs/
extensions/mv3/match_patterns/

[9] Chrome Developers. 2023. Can extensions use web storage APIs?
https://developer.chrome.com/docs/extensions/reference/api/storage#can_
extensions_use_web_storage_apis

[10] Chrome Developers. 2023. Chrome Extensions Sitemap. https://chrome.google.
com/webstore/sitemap

[11] Chrome Developers. 2023. chrome.bookmarks. https://developer.chrome.com/
docs/extensions/reference/bookmarks/

[12] Chrome Developers. 2023. chrome.offScreen. https://developer.chrome.com/
docs/extensions/reference/api/offscreen

[13] Chrome Developers. 2023. chrome.runtime. https://developer.chrome.com/docs/
extensions/reference/runtime/

[14] Chrome Developers. 2023. chrome.scripting.executeScript. https://developer.
chrome.com/docs/extensions/reference/scripting/#method-executeScript

[15] Chrome Developers. 2023. Declare Permissions. https://developer.chrome.com/
docs/extensions/mv3/declare_permissions/

[16] Chrome Developers. 2023. Inject with dynamic declarations. https://developer.
chrome.com/docs/extensions/mv3/content_scripts/#dynamic-declarative

[17] Chrome Developers. 2023. Message Passing. https://developer.chrome.com/
docs/extensions/mv3/messaging/

[18] Chrome Developers. 2023. Offline Data. https://web.dev/learn/pwa/offline-data/
[19] Chrome for Developers. 2024. Inject Scripts. https://developer.chrome.com/

docs/extensions/develop/concepts/content-scripts#functionality
[20] Aurore Fass, Dolière Francis Somé,Michael Backes, and Ben Stock. 2021. DoubleX:

Statically Detecting Vulnerable Data Flows in Browser Extensions at Scale. In
CCS.

[21] Sheryl Hsu, Manda Tran, and Aurore Fass. 2024. What is in the Chrome Web
Store?. In AsiaCCS.

[22] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis Mavrommatis, Niels
Provos, Moheeb Abu Rajab, and Kurt Thomas. 2015. Trends and lessons from
three years fighting malicious extensions. In USENIX Security.

[23] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-
vanni Vigna, and Vern Paxson. 2014. Hulk: Elicitingmalicious behavior in browser
extensions. In USENIX Security.

[24] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. 2020.
Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting.. In
NDSS.

[25] Soroush Karami, Faezeh Kalantari, Mehrnoosh Zaeifi, Xavier J Maso, Erik
Trickel, Panagiotis Ilia, Yan Shoshitaishvili, Adam Doupé, and Jason Polakis.
2022. Unleash the Simulacrum: Shifting Browser Realities for Robust {Extension-
Fingerprinting} Prevention. In USENIX Security.

[26] Young Min Kim and Byoungyoung Lee. 2023. Extending a hand to attackers:
browser privilege escalation attacks via extensions. In USENIX Security.

[27] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
beast: Diverting modern web browsers to build unique browser fingerprints. In
IEEE S&P.

[28] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick
Nikiforakis. 2021. Fingerprinting in style: Detecting browser extensions via
injected style sheets. In USENIX Security.

[29] Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. 2015. The
Unexpected Dangers of Dynamic JavaScript. In USENIX Security.

[30] Xu Lin, Frederico Araujo, Teryl Taylor, Jiyong Jang, and Jason Polakis. 2022.
Fashion Faux Pas: Implicit Stylistic Fingerprints for Bypassing Browsers’ Anti-
Fingerprinting Defenses. In IEEE S&P.

[31] Mozilla Developer Network. 2023. IndexedDB API. https://developer.mozilla.
org/en-US/docs/Web/API/IndexedDB_API

[32] Mozilla Developer Network. 2023. Web Storage API. https://developer.mozilla.
org/en-US/docs/Web/API/Web_Storage_API

[33] Mozilla Developer Network. 2023. Window.localStorage property. https:
//developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

[34] Mozilla Developer Network. 2024. DOMAccess. https://developer.mozilla.org/en-
US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts#dom_access

[35] Mozilla Developer Networks. 2023. Browser Extensions. https://developer.
mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions

[36] Mozilla Developer Networks. 2023. Function.prototype.caller. https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Function/caller

[37] Mozilla Developer Networks. 2023. IDBFactory: databases() method. https:
//developer.mozilla.org/en-US/docs/Web/API/IDBFactory/databases

[38] Mozilla Developer Networks. 2023. Standard built-in objects. https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

[39] Mozilla Developer Networks. 2023. web_accessible_resources. https:
//developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.
json/web_accessible_resources

https://developer.chrome.com/docs/extensions/mv3/manifest/externally_connectable/
https://developer.chrome.com/docs/extensions/mv3/manifest/externally_connectable/
https://developer.chrome.com/docs/extensions/mv3/match_patterns/
https://developer.chrome.com/docs/extensions/mv3/match_patterns/
https://developer.chrome.com/docs/extensions/reference/api/storage#can_extensions_use_web_storage_apis
https://developer.chrome.com/docs/extensions/reference/api/storage#can_extensions_use_web_storage_apis
https://chrome.google.com/webstore/sitemap
https://chrome.google.com/webstore/sitemap
https://developer.chrome.com/docs/extensions/reference/bookmarks/
https://developer.chrome.com/docs/extensions/reference/bookmarks/
https://developer.chrome.com/docs/extensions/reference/api/offscreen
https://developer.chrome.com/docs/extensions/reference/api/offscreen
https://developer.chrome.com/docs/extensions/reference/runtime/
https://developer.chrome.com/docs/extensions/reference/runtime/
https://developer.chrome.com/docs/extensions/reference/scripting/#method-executeScript
https://developer.chrome.com/docs/extensions/reference/scripting/#method-executeScript
https://developer.chrome.com/docs/extensions/mv3/declare_permissions/
https://developer.chrome.com/docs/extensions/mv3/declare_permissions/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/#dynamic-declarative
https://developer.chrome.com/docs/extensions/mv3/content_scripts/#dynamic-declarative
https://developer.chrome.com/docs/extensions/mv3/messaging/
https://developer.chrome.com/docs/extensions/mv3/messaging/
https://web.dev/learn/pwa/offline-data/
https://developer.chrome.com/docs/extensions/develop/concepts/content-scripts#functionality
https://developer.chrome.com/docs/extensions/develop/concepts/content-scripts#functionality
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts#dom_access
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts#dom_access
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/caller
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/caller
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/caller
https://developer.mozilla.org/en-US/docs/Web/API/IDBFactory/databases
https://developer.mozilla.org/en-US/docs/Web/API/IDBFactory/databases
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources


Peeking through the window: Fingerprinting Browser Extensions through Page-Visible Execution Traces and Interactions CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[40] Mozilla Developer Networks. 2024. CSP for content scripts. https:
//developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_
Security_Policy#csp_for_content_scripts

[41] Mozilla Developer Networks. 2024. Object.freeze(). https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

[42] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vi-
gna. 2013. Cookieless Monster: Exploring the Ecosystem of Web-Based Device
Fingerprinting. In IEEE S&P.

[43] Nikolaos Pantelaios, Nick Nikiforakis, and Alexandros Kapravelos. 2020. You’ve
Changed: Detecting Malicious Browser Extensions through Their Update Deltas.
In CCS.

[44] Raffaello Perrotta and Feng Hao. 2018. Botnet in the browser: Understanding
threats caused by malicious browser extensions. In IEEE S&P.

[45] Raider. 2024. Artifacts. https://github.com/raider-ext/raider
[46] Alexander Sjösten, Steven Van Acker, Pablo Picazo-Sanchez, and Andrei Sabelfeld.

2019. Latex Gloves: Protecting Browser Extensions from Probing and Revelation
Attacks.. In NDSS.

[47] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering
browser extensions via web accessible resources. In CODASPY.

[48] Konstantinos Solomos, Panagiotis Ilia, Soroush Karami, Nick Nikiforakis, and
Jason Polakis. 2022. The dangers of human touch: fingerprinting browser exten-
sions through user actions. In USENIX Security.

[49] Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis, and Jason Polakis. 2022.
Escaping the Confines of Time: Continuous Browser Extension Fingerprinting
Through Ephemeral Modifications. In CCS.

[50] Konstantinos Solomos, John Kristoff, Chris Kanich, and Jason Polakis. 2021. Tales
of favicons and caches: Persistent tracking in modern browsers. In NDSS.

[51] Dolière Francis Somé. 2019. Empoweb: empowering web applications with
browser extensions. In IEEE S&P.

[52] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Nikiforakis.
2019. Unnecessarily Identifiable: Quantifying the fingerprintability of browser
extensions due to bloat. In WWW.

[53] Oleksii Starov and Nick Nikiforakis. 2017. Xhound: Quantifying the fingerprint-
ability of browser extensions. In IEEE S&P.

[54] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild.. In NDSS.

[55] Ben Stock, Giancarlo Pellegrino, Frank Li, Michael Backes, and Christian Rossow.
2018. Didn’t you hear me? — Towards more successful Web Vulnerability Notifi-
cations. In NDSS.

[56] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael
Backes. 2016. Hey, You Have a Problem: On the Feasibility of Large-Scale Web
Vulnerability Notification. In USENIX Security.

[57] Junhua Su and Alexandros Kapravelos. 2023. Automatic Discovery of Emerging
Browser Fingerprinting Techniques. In WWW.

[58] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros
Kapravelos, Damon Mccoy, Antonio Nappa, Vern Paxson, Paul Pearce, Niels
Provos, and Moheeb Abu Rajab. 2015. Ad Injection at Scale: Assessing Deceptive
Advertisement Modifications. In IEEE S&P.

[59] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam
Doupé. 2019. Everyone is different: Client-side diversification for defending
against extension fingerprinting. In USENIX Security.

[60] WebExtensions. 2023. User Scripts API. https://github.com/w3c/webextensions/
blob/main/proposals/user-scripts-api.md

[61] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weinsberg, Anmol Sheth, Roberto
Perdisci, andWenke Lee. 2015. UnderstandingMalvertising ThroughAd-Injecting
Browser Extensions. In WWW.

[62] Jianjia Yu, Song Li, Junmin Zhu, and Yinzhi Cao. 2023. CoCo: Efficient Browser
Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract
Interpretation. In CCS.

A APPENDIX

1 // API Type 1
2 var foo = [1, 2, 3];
3 foo.forEach((element) => {
4 console.log(element);
5 })
6 // API Type 2
7 var bar = new Set([1, 2, 3]);
8 console.log(Array.isArray(bar));

Listing 5: JavaScript APIs and their execution contexts.

1 "content_scripts": [
2 {
3 "js": ["content_script.js"],
4 "matches": ["https://*/*"]
5 }
6 ],
7 "web_accessible_resources": [
8 {
9 "resources": ["storage.js"],
10 "matches": ["<all_urls>"]
11 },
12 {
13 "resources": ["cookies.js"],
14 "matches": ["*://*/*"]
15 }
16 ]

Listing 6: Extensions with relevant content scripts & WARs.

Figure 4: The install counts for 2,747 Chrome extensions
reported by Raider.

Categories # Extensions Categories # Extensions

Workflow & Planning 1,074 Fun 55
Developer Tools 600 Just for Fun 52
Tools 270 Privacy & Security 39
Accessibility 174 Education 27
Shopping 144 Communication 22
Social Networking 132 Functionality & UI 14
Productivity 72 Social & Communication 12
Art & Design 8 Entertainment 7
News & Weather 7 Well-being 2
Photos 2 Games 2
Household 1 Travel 1

Table 6: Categories of extensions reported by Raider to be
fingerprintable. We could not extract any explicit category
for 30 extensions from the Chrome Web Store.

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_Security_Policy#csp_for_content_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_Security_Policy#csp_for_content_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_Security_Policy#csp_for_content_scripts
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://github.com/raider-ext/raider
https://github.com/w3c/webextensions/blob/main/proposals/user-scripts-api.md
https://github.com/w3c/webextensions/blob/main/proposals/user-scripts-api.md

	Abstract
	1 Introduction
	2 Technical Background
	2.1 Browser Extensions
	2.2 The Global Namespace in JavaScript
	2.3 Client-Side Storage Mechanisms
	2.4 postMessages & Other Runtime Events

	3 Threat Model
	4 Research Methodology
	4.1 Raider: Overview
	4.2 Static Pre-filtering
	4.3 Execution Traces of Injected Code
	4.4 Side Effects: Storage APIs and Messages
	4.5 Data Collection and Identification

	5 Evaluation & Results
	5.1 Raider Dataset
	5.2 Carnus Dataset
	5.3 Firefox Dataset

	6 Discussion
	6.1 Ethics and Responsible Disclosure
	6.2 Limitations
	6.3 Existing Fingerprinting Defenses
	6.4 Extension Ecosystem & Standards
	6.5 Recommendations and Mitigation Strategies

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix

